Differential Activity of Plasma and Vacuolar Membrane Transporters Contributes to Genotypic Differences in Salinity Tolerance in a Halophyte Species, Chenopodium quinoa

نویسندگان

  • Edgar Bonales-Alatorre
  • Igor Pottosin
  • Lana Shabala
  • Zhong-Hua Chen
  • Fanrong Zeng
  • Sven-Erik Jacobsen
  • Sergey Shabala
چکیده

Halophytes species can be used as a highly convenient model system to reveal key ionic and molecular mechanisms that confer salinity tolerance in plants. Earlier, we reported that quinoa (Chenopodium quinoa Willd.), a facultative C3 halophyte species, can efficiently control the activity of slow (SV) and fast (FV) tonoplast channels to match specific growth conditions by ensuring that most of accumulated Na+ is safely locked in the vacuole (Bonales-Alatorre et al. (2013) Plant Physiology). This work extends these finding by comparing the properties of tonoplast FV and SV channels in two quinoa genotypes contrasting in their salinity tolerance. The work is complemented by studies of the kinetics of net ion fluxes across the plasma membrane of quinoa leaf mesophyll tissue. Our results suggest that multiple mechanisms contribute towards genotypic differences in salinity tolerance in quinoa. These include: (i) a higher rate of Na+ exclusion from leaf mesophyll; (ii) maintenance of low cytosolic Na+ levels; (iii) better K+ retention in the leaf mesophyll; (iv) a high rate of H+ pumping, which increases the ability of mesophyll cells to restore their membrane potential; and (v) the ability to reduce the activity of SV and FV channels under saline conditions. These mechanisms appear to be highly orchestrated, thus enabling the remarkable overall salinity tolerance of quinoa species.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reduced tonoplast fast-activating and slow-activating channel activity is essential for conferring salinity tolerance in a facultative halophyte, quinoa.

Halophyte species implement a "salt-including" strategy, sequestering significant amounts of Na(+) to cell vacuoles. This requires a reduction of passive Na(+) leak from the vacuole. In this work, we used quinoa (Chenopodium quinoa) to investigate the ability of halophytes to regulate Na(+)-permeable slow-activating (SV) and fast-activating (FV) tonoplast channels, linking it with Na(+) accumul...

متن کامل

Identification of Putative Transmembrane Proteins Involved in Salinity Tolerance in Chenopodium quinoa by Integrating Physiological Data, RNAseq, and SNP Analyses

Chenopodium quinoa (quinoa) is an emerging crop that produces nutritious grains with the potential to contribute to global food security. Quinoa can also grow on marginal lands, such as soils affected by high salinity. To identify candidate salt tolerance genes in the recently sequenced quinoa genome, we used a multifaceted approach integrating RNAseq analyses with comparative genomics and topo...

متن کامل

Reduced Tonoplast Fast-Activating and Slow-Activating Channel Activity Is Essential for Conferring Salinity Tolerance in a Facultative Halophyte, Quinoa1[C][W][OA]

Halophyte species implement a “salt-including” strategy, sequestering significant amounts of Na to cell vacuoles. This requires a reduction of passive Na leak from the vacuole. In this work, we used quinoa (Chenopodium quinoa) to investigate the ability of halophytes to regulate Na-permeable slow-activating (SV) and fast-activating (FV) tonoplast channels, linking it with Na accumulation in mes...

متن کامل

Effect of NaCl salinity on water relations, photosynthesis and chemical composition of Quinoa (Chenopodium quinoa Willd.) as a potential cash crop halophyte

Despite the large interest in the use of Chenopodium quinoa as a crop on extreme habitats, very little is known about growth response and seed yield under saline conditions. As a prerequisite for its sustainable utilization in salt-affected areas, this study aimed to unravel individual physiological and morphological mechanisms that determine its salt tolerance. Hence, the plants were grown in ...

متن کامل

بررسی اثر سطوح مختلف شوری بر برخی خصوصیات مورفولوژیکی گیاه کینوا (Chenopodium quinoa Willd.) تحت رژیم‌های مختلف آبیاری

In order to study the effects of different irrigation regimes and different levels of salinity on the growth parameters of Quinoa (Chenopodium quinoa Willd.), this experiment was performed in the research green house of Water Engineering Department, at f Gorgan University of Agricultural Sciences and Natural Resources, during 2016. The experimental design was a factorial with n a randomized com...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2013